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Abstract

Sir Harold Himsworth’s prescient observations 75 years ago have recently been expanded to include a clear relationship

between insulin resistance and central nervous system function. Insulin is a master regulator of corporeal ageing in all known

species, determining the rateandexpressionofageing inmultiplebodysystems.Thus, it isnot surprising that insulinalsoplaysan

important role in brain ageing and cognitive decline that is associated with pathological brain ageing. Brain ageing is

accompanied by reduced insulin effectiveness, either by an inadequate cellular response to insulin or by insulin deficiency

attributable to reduced insulin transport across the blood–brain barrier. Age-associated brain insulin abnormalities may

contribute to cognitive decline in ageing, as have been documented in older adults with Type 2 diabetes mellitus and

hypertension. With more extreme pathology, brain insulin resistance may be associated with neurogenerative diseases such as

Alzheimer’sdisease, and the conditionwhichprecedesAlzheimer’sdisease, knownasamnesticmildcognitive impairment. In the

following review, we discuss the mechanisms through which insulin resistance may induce or potentiate pathological brain

ageing and thereby create a neurobiological environment that promotes neurodegeneration and associated cognitive decline.

This topic is timely, given that insulin resistance-associated conditions such as diabetes and obesity have reached epidemic

proportions. The prevalence of such chronic conditions, in combination with a rapidly ageing population, may result in a

corresponding increase in the prevalence of Alzheimer’s disease and other cognitive disorders. Fortunately, insulin resistance-

associated conditions are amenable to both pharmacologic and lifestyle interventions that may reduce the deleterious impact of

insulin resistance on the ageing brain.
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Insulin and the brain

The peripheral effects of insulin, a hormone secreted by

pancreatic b-cells, have been well characterized. Recent

evidence demonstrates that insulin is also active in the central

nervous system. Although controversy exists as to whether

insulin is synthesized in the adult brain, it is readily transported

into the central nervous system across the blood–brain barrier by

a saturable, receptor-mediated process [1–3]. Raising peripheral

insulin levels acutely elevates brain and cerebrospinal fluid

insulin levels, whereas prolonged peripheral hyperinsulinaemia

down-regulates blood–brain barrier insulin receptors and

reduces insulin transport into the brain [4,5]. Insulin receptors

are located in the synapses of both astrocytes and neurons [6].

Although insulin and insulin receptors are abundant in the brain,

they are selectively distributed, with high concentrations in the

olfactory bulb, cerebral cortex, hippocampus, hypothalamus,

amygdala and septum [2,7–9].

Insulin and cognition

Insulin receptors are densely localized in the hippocampus and

medial temporal cortex, areas which support memory. In rats,

acute intracerebroventricular insulin administration improves

memory on a passive-avoidance task [9]. In humans, acute

intravenous insulin administration, while maintaining

euglycaemia, reliably enhances story recall [10–13]. Intranasal

insulin administration using specialized nose-to-brain delivery

devices also enhances memory [14]. Conversely, learning may

also influence insulin receptor expression and function. For

example, training rodents on a spatial memory task increased

insulin receptor expression in the hippocampal dentate gyrus and

CA1 field [15]. Thus, the act of learning is accompanied by
Correspondence to: Suzanne Craft, VAPSHCS, GRECC-S182, 1660 S.

Columbian Way, Seattle, WA 98108, USA. E-mail: scraft@u.washington.edu

DIABETICMedicine

DOI:10.1111/j.1464-5491.2011.03464.x

ª 2011 The Authors.
Diabetic Medicine ª 2011 Diabetes UK 1463



changes in insulin signalling molecules in the hippocampus.

Collectively, these studies suggest that insulin may contribute to

normal memory functioning.

There are several mechanisms through which insulin may

affect memory. One mechanism may be through effects on

cerebral energy metabolism. Although insulin does not appear to

influence glucose transport into the brain, it may have more

selective effects on cerebral glucose metabolism. Bingham et al.

[16] demonstrated an increase in cerebral glucose metabolism

that was particularly pronounced in the cortex following

administration of a low dose of insulin. The basis for regional

insulin effects on glucose metabolism may be attributable to the

distribution of glucose transporter isoforms (GLUTs) [17,18].

The insulin-sensitive GLUTs 4 and 8 are selectively distributed in

the brain and insulin increases brain GLUT 4 expression and

translocation [19]. In rats, GLUT 4 is expressed in the

cerebellum, sensorimotor cortex, hippocampus, pituitary and

hypothalamus [20–23] and GLUT 8 has been observed in the

hippocampus and hypothalamus [17]. Notably, substantial

co-localization exists for insulin-containing neurons, insulin

receptors and GLUTs 4 and 8 [18,20]. These overlapping

distributions are consistent with insulin-stimulated glucose

uptake in selective brain regions, including medial temporal

lobe structures that support learning and memory.

Other insulin-related mechanisms that are not directly related

to modulation of glucose uptake have also been implicated in

normal hippocampal functioning [24]. Long-term potentiation is

a process of synaptic circuit remodelling thought to play a critical

role in memory formation. Insulin may influence components of

the long-term potentiation cascade, such as the cell membrane

expression of NMDA receptors [25], which affect the likelihood

of long-term potentiation induction. Insulin also modulates

central nervous system levels acetylcholine and norepinephrine,

neurotransmitters that are known to influence cognitive function

[26,27] Thus, insulin affects numerous mechanisms relating to

neuronal activity and cognitive function supported by such

activity.

Insulin resistance and impaired cognition

In contrast to the beneficial effects of acute insulin elevations

described above, insulin dysfunction resulting from insulin

resistance and compensatory chronic elevations of circulating

insulin may exert a negative influence on memory and other

cognitive functions. For example, Type 2 diabetes has been

associated with impaired learning in both animal and human

studies [28]. Furthermore, impaired verbal memory has been

observed in individuals with chronic hyperinsulinaemia in the

absence of hyperglycaemia [29]. Additionally, impaired glucose

tolerance has been associated with reduced hippocampal volume

and memory impairment [30]. Taken together, these findings are

consistent with the notion that acute and chronic

hyperinsulinaemia have opposing effects on the neural

substrates of memory. Chronic high levels of insulin and

insulin resistance may exert a negative influence on several

body systems, including the central nervous system, for some

time prior to the onset of frank diabetes. There is increasing

support that such early insulin abnormalities may be associated

with the initiation of the cascade of Alzheimer’s disease

pathology in some individuals, years or even decades before the

first clinical dementia symptoms are manifest.

Insulin abnormalities and Alzheimer’s disease pathology

Converging evidence supports that the presence of insulin

resistance raises the risk for developing Alzheimer’s disease

neuropathology.Themanner inwhich insulinabnormalitiesmay

contribute to the symptoms and pathogenesis of Alzheimer’s

disease have been examined in a variety of experimental models.

Hoyer and colleagues were the first group to suggest that

desensitization of the neuronal insulin receptor plays a role in

Alzheimer’s disease [31]. In support of his theory, he and

colleagues have demonstrated a reduction in insulin receptors

and tyrosine kinase activity markers in Alzheimer’s disease brain

[32]. This initial finding has been confirmed and extended in a

larger sample of patients, which demonstrated reduced insulin

message with increasing Alzheimer’s disease pathology and

cholinergic deficit [33].

Animal and in vitro studies have documented relationships

between insulin and mechanisms with clear pathogenic

implications for Alzheimer’s disease. In vitro, insulin

modulates levels of the b-amyloid (A b) peptide, the

aggregation of which is a fundamental neuropathological

hallmark of Alzheimer’s disease. For example, insulin

promotes release of intracellular A b in neuronal cultures,

accelerating their trafficking from the Golgi and trans-Golgi

network to the plasma membrane [34]. Thus, low brain insulin

may reduce the release of Ab from intracellular to extracellular

compartments.

Interestingly, Abalso regulates brain insulin signalling. Soluble

Ab binds to the insulin receptor and disrupts its signalling

capacity and long-term potentiation induction in mouse

hippocampal slice preparations [35]. These effects could be

prevented by exposing tissue to insulin prior to Ab exposure.

Synthetic soluble Ab oligomers, down-regulate plasma

membrane insulin receptors in primary hippocampal cultured

neurons, leading to synaptic spine loss. This process was also

prevented by pretreatment with insulin [36]. A related

mechanism through which insulin and Ab may interact to

modulate Alzheimer’s disease pathology is via synaptotoxic

effects. Loss of synapses is the earliest structural defect observed

in Alzheimer’s disease. Soluble oligomeric species of Ab are

synaptotoxic, and insulin prevents binding of Ab to synapses,

thereby preserving synaptic integrity [36]. Insulin also reduced

oligomer formation, which may have additional protective

effects; a functional consequence of these effects appears to be

protection against Ab-induced disruption of long-term

potentiation integrity, the process of synaptic remodelling

believed to underlie memory formation [37]. Collectively, these

findings suggest that soluble Ab may induce neuronal insulin
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resistance and synapse loss and that treatment with insulin, such

as is provided by intranasal insulin therapy, may prevent these

pathological processes.

A growing understanding of the importance of impaired Ab
clearance as opposed to increased Ab production in late-onset

Alzheimer’s disease has created intense focus on mechanisms

regulating Ab degradation. Insulin may modulate Ab
degradation by regulating expression of the insulin degrading

enzyme, a metalloprotease that catabolizes insulin [38]. The

insulin degrading enzyme is highly expressed in brain as well as in

liver, kidney and muscle [39] and may play a critical role in Ab
clearance in brain [40–42]. The insulin degrading enzyme has

also been implicated in the intracellular degradation of Ab [43].

Furthermore, decreased insulin degrading enzyme activity, levels

and mRNA have been observed in Alzheimer’s disease brain

tissue and insulin degrading enzymeknockout mice have reduced

degradation of Aband insulin in brain [44–46]. Thus, low central

nervous system insulin may reduce insulin degrading enzyme

levels in brain and thereby impair Ab clearance.

Chronic peripheral hyperinsulinaemia may thus lower brain

insulin levels and interfere with peripheral Ab clearance. Chronic

peripheral hyperinsulinaemia has been associated with a pattern

in which brain insulin levels are initially higher, then decrease as

transport of insulin into the brain is down-regulated [47].

Consistent with this pattern, it has been shown that genetically

obese Zucker rats have reduced insulin binding to brain

capillaries [4] and reduced hypothalamic insulin levels [48] in

comparison with lean controls. Additionally, in a canine model

of diet-induced insulin resistance, brain uptake of labelled insulin

was reduced and peripheral insulin clearance was inhibited[49].

Adults with Alzheimer’s disease show lower cerebrospinal fluid

insulin levels, higher plasma insulin levels and reduced

cerebrospinal fluid–plasma insulin ratios compared with healthy

control subjects. High plasma insulin levels may interfere with

degradation of Ab transported out of the brain, thereby

obstructing a peripheral Ab-clearing ‘sink’. Concomitantly, low

brain insulin levels reduce release of Ab from intracellular

compartments into extracellular compartments where clearance

is believed to occur. Thus, for some patients with Alzheimer’s

disease, high peripheral insulin levels and low brain insulin levels

would result in reduced clearance of Ab both in brain and in the

periphery (Fig. 1).

Support for the validity of this model is provided by a recent

study that induced insulin resistance in the T2576 mouse model

of Alzheimer’s disease with a high-fat diet. Diet manipulation

resulted in a metabolic profile of high peripheral insulin and low

brain insulin and insulin degrading enzyme levels compared with

Tg2576 mice fed a normal diet [50]. Diet-induced insulin

resistance caused twofold increases in Ab40 and 42, and earlier,

larger Ab deposits compared with non-insulin-resistant Tg2576

mice. Furthermore, insulin-resistant mice had impaired learning

on a water maze test. In another model of insulin resistance,

APP ⁄ PS1 mice were given sucrose-sweetened beverages and also

demonstrated increased brain Ab deposition and reduced Morris

water maze learning [51]. Together these results suggest that

insulin resistance can precipitate the neuropathological and

behavioural features of Alzheimer’s disease and that raising brain

insulin levels may reduce neuropathological changes related to

Alzheimer’s disease.

A role for insulin has also been suggested for other Alzheimer’s

disease-related mechanisms. Insulin inhibits phosphorylation of

tau, the protein that forms neurofibrillary tangles, a second

neuropathological hallmark of Alzheimer’s disease. Insulin may

affect tau through its regulation of glycogen synthase kinase

(GSK)3b, a downstream target in the insulin signalling pathway

[52]. Schubert and colleagues [53] abolished insulin signalling

in vivo with a conditional knockout mouse model in which the

insulin receptor gene was inactivated in the central nervous

system. Phosphorylation of GSK 3b and protein kinase B (Akt)

was reduced and phosphorylation of tau increased 3.5-fold.

Recent work also implicates insulin receptor substrate 2, in that

mice in which this gene has been knocked out have increased

tangles and hyperphosphorylated tau [54].

Insulin resistance-related conditions and
dementia

The above research provides compelling evidence concerning

insulin’s role in the central nervous system and the connection

between impaired insulin action and the pathology that underlies

Alzheimer’s disease. The association between dementia and

insulin resistance is further substantiated by investigations of

conditions related to insulin dysfunction. Insulin resistance is a

primary underlying cause of multiple chronic diseases and, as

such, a likely key risk factor for dementia. However, because

insulin resistance is rarely identified in its earliest stages

and independent of these conditions, it is seldom incorporated
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as a primary variable of interest in population-based models.

Here, we focus on the increased dementia risk associated

with insulin resistance-related syndromes, including diabetes,

hyperlipidaemia, hypertension and obesity.

Diabetes

Diabetes is a strong predictor of cognitive decline in older adults

[55,56] and multiple population-based studies have reported an

association between insulin resistance and cognitive impairment

in elderly populations [57–64]. Type 2 diabetes confers a

significantly increased risk of dementia (both Alzheimer’s

disease and vascular dementia), a relationship that has been

consistently reported in the literature [65–70]. For example, in

the prospective, community-based Rotterdam study, Ott et al.

[71] found that Type 2 diabetes significantly increased the risk

for all-cause dementia and Alzheimer’s disease, with greater risk

apparent in people who were insulin-treated (and therefore likely

to be in the more severe stages of the disease) at baseline. Similar

results were reported by Leibson et al. [72] and the Religious

Orders Study reported a 65% increased risk for Alzheimer’s

disease among those with Type 2 diabetes [73]. Findings from

the Mayo Clinic Alzheimer’s Disease Patient Registry show an

increased prevalence of Type 2 diabetes (35 vs. 18% in non-

demented control subjects) and impaired glucose tolerance (46

vs. 24%) for patients with Alzheimer’s disease [74]. Further,

Alzheimer’s disease risk is raised independently from vascular

dementia or other dementias [67,75], a finding that is not

surprising given the wealth of literature that connects insulin

dysfunction with Alzheimer’s disease-specific brain pathology.

Interestingly, dementia risk does not appear to be associated with

the age at which diabetes is diagnosed [76].

Coupled with animal and in vitro studies that support the

influence of insulin on Alzheimer’s disease pathophysiological

processes, the above epidemiological evidence provides further

support for the association between diabetes and dementia.

Recent neuropathological studies, however, have produced

interesting and somewhat conflicting results. For example,

dementia patients with treated diabetes had Ab plaque loads

that were similar to those of non-demented control subjects,

whiledementiapatientswithuntreateddiabeteshadplaque loads

consistent with dementia patients without diabetes [77]. Patients

with treated diabetes with dementia had higher levels of

microvascular infarcts and anti-inflammatory markers to a

degree not present in patients with untreated diabetes [78].

Given the preliminary nature of these results and small sample

sizes, these studies must be replicated prior to making any firm

conclusions as to their meaning. If supported by larger studies,

however, these findings could bring into question the relative

impact of both Ab and microvascular disease in the development

of clinical dementia symptoms. It is possible that patients with

treated diabetes, who are likely to be at a more advanced stage of

disease, are more susceptible to lower levels of amyloid burden

when they occur in the context of microvascular damage. Future

neuropathological studies that carefully examine disease

duration, treatment duration and dose, and concomitant

vascular risk factors will certainly help to clarify these questions.

Dyslipidaemia

Insulin is a key modulator of lipid metabolism, and insulin

resistance is associated with dyslipidaemia, a process that may

represent yet another pathway by which insulin potentially

exacerbates pathological Ab processes in the brain. Although the

mechanisms underlying the association between lipids,

lipoproteins and Ab are not well understood, it is increasingly

clear that these interactionsplay a vital role in Abproduction and

clearance. Animal models show greater VLDL secretion in

advance of Ab deposits in the brain [79] and Alzheimer’s disease

is associated with increased postprandial chylomicron and LDL

levels [80]. Lipoproteins, including apolipoproteins E and J

(apoE and apoJ), appear to play a significant role in mediating

central nervous system Ab transport and clearance. For example,

highly lipidated apoE increases Ab clearance and thus reduces

amyloid deposition in the brain, while poorly lipidated apoE

increases amyloid burden [81]. In the periphery, the Ab clearance

may also be mediated by apoE, apoJ and lipoprotein receptor-

related protein-2 [82]. Inhibition of peripheral Ab clearance may

in turn lead to increased accumulation of Ab in the brain.

Given the above results, it is not surprising that a relationship

between hyperlipidaemia and Alzheimer’s disease has been

postulated. However, the connection between cholesterol and

dementia is complex. High plasma cholesterol at midlife is

associated with higher Ab40 levels [83] and a 2- to 3-fold

increased risk for later Alzheimer’s disease dementia [84].

Conversely, total cholesterol in late life does not appear to be

associated with Alzheimer’s disease risk [84] and may in fact be

protective to some degree [85,86]. In addition, despite the

relationship between hyperlipidaemia and vascular dysfunction,

high total cholesterol has not been linked with an increased risk

for vascular dementia in either mid or late life [84]. Further

investigation into the complex role of cholesterol, Ab and

dementia is thus warranted.

Hypertension

Through both direct effects and insulin resistance-related

dyslipidaemia and inflammation, insulin dysfunction can

substantially impact the vasculature. Insulin mediates capillary

recruitment, vasodilation and regional blood flow [87,88].

Insulin resistance-associated declines in nitrous oxide and

increases in endothelin-1 activity results in vasoconstriction

and reduced blood flow. In the brain, such vasoconstriction and

reduced capillary recruitment may ultimately impede neural

activity and thus negatively impact cognitive function.

Approximately one in three adults have hypertension [89] and

50% of hypertensive patients are insulin resistant [90].

Hypertension impairs neuron-dependent blood flow (known as

functional hyperaemia) via a number of insulin resistance-related

processes, including oxidative stress, dysregulation of vasoactive
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mediators (including nitrous oxide and endothelin-1), structural

alteration of the blood vessels and insufficient cerebral

autoregulation [91]. Animal models evidence increased Ab
deposition with hypertension, which leads to vascular

dysfunction and reduced functional hyperaemia [91]. In

population-based studies, hypertension at midlife is a risk

factor for Alzheimer’s disease and vascular dementia, lower

brain weight and Ab plaque load [92–95]. As with total

cholesterol, however, studies examining the effects of late-life

hypertension on dementia are mixed and blood pressure may in

fact decline in the years prior to and following clinical dementia

diagnosis [96].

Obesity

Obesity is a growing and dangerous epidemic in the USA and is

closely linked to insulin dysregulation; 80% of obese individuals

are insulin resistant [97]. Insulin typically inhibits adipocyte

lipase action, which decreases the release of free fatty acids from

adipose tissue. With obesity and insulin resistance, however, this

process is disturbed and leads to chronically elevated free fatty

acids [97]. Free fatty acids are linked to Alzheimer’s disease

pathology through a number of potential mechanisms, including

inducing inflammation, promoting Ab deposition and inhibiting

Ab clearance. Elevated free fatty acids inhibit the insulin

degrading enzyme, which is both essential for normal insulin

signalling and vital for Ab clearance [98]. Further, free fatty acids

promote the development of amyloid and tau filaments in vitro

[99,100]. Free fatty acids also induce inflammation, particularly

through interactions with tumour necrosis factor alpha (TNF-a),

an inflammatory cytokine that has been implicated in

Alzheimer’s disease pathogenesis, particularly Ab accumulation

in brain [101–103]. TNF-a is overexpressed in adipose tissue of

obese animals and humans, whereas neutralization of TNF-a
increases insulin sensitivity and decreases plasma free fatty acid

levels [104].

Despite the associations between obesity and the mechanistic

processes leading to Alzheimer’s disease pathology, the

connection between obesity and dementia risk is not entirely

clear [65]. Although associated with other insulin resistance-

related conditions, including diabetes, hypertension and poorly

controlled lipids, midlife obesity appears to confer a risk for later

dementia over and above these factors [105–107]. Evidence

concerning the effects of late-life adiposity on dementia risk is less

clear, however [107], and individuals typically begin to lose

weight with the onset of dementia. Despite conflicting literature

in this area, however, it is likely that targeting the obesity

epidemic across the lifespan would have substantial beneficial

effects on overall health status and cognitive function.

Insulin resistance-related conditions: conclusions

For many of the insulin resistance-related conditions described

above, it is becoming increasingly apparent that dementia risk is

particularly elevated when such disorders are present during

midlife. The reasons for this association are not entirely known;

however, the neuropathological conditions associated with later

dementia begin many years prior to the onset of the clinical

dementia syndrome. Risk for chronic disease increases

substantially at midlife and may set in motion the pathological

processes responsible for late-life dementia. Interestingly,

diabetes even in late life increases dementia risk, a finding that

underscores the likely presence of subclinical impaired glucose

tolerance resulting from insulin resistance for years prior to the

onset of the disease.

Insulin resistance and Alzheimer’s disease:
preventative and therapeutic approaches

Pharmacologic insulin sensitization

Given the relationship between insulin resistance and memory

impairment, therapeutic strategiesaimed at treating early Type 2

diabetes may also benefit those patients with mild cognitive

impairment or Alzheimer’s disease. Peroxisome proliferator-

activated receptor gamma (PPAR-c) agonists improve insulin

sensitivity, decreasing circulating insulin and increasing insulin-

mediated glucose uptake, with minimal risk of hypoglycaemia

[108]. PPAR-c activity may also reduce both Ab accumulation

and inflammation and thereby protect against neurotoxicity

[109–111]. PPAR-c agonists inhibit Ab-stimulated secretion of

pro-inflammatory products and decreased oxidative stress in

both in vitro and in vivo models [112,113]. PPAR-c agonists are

thus attractive candidates for the treatment of insulin resistance

and inflammation associated with early cognitive decline.

Rosiglitazone, a compound that binds with high affinity to

PPAR-c [114], has been used asan anti-diabetic insulin sensitizer.

Rosiglitazone normalizes the insulin response and ameliorates

the associated impaired stress response in Alzheimer’s disease

mouse models [115]. We conducted a parallel group, double-

blind, placebo-controlled trial to test the hypothesis that

treatment with rosiglitazone would produce beneficial

cognitive effects for patients with amnestic mild cognitive

impairment and early Alzheimer’s disease [116]. Participants

received a daily dose of 4 mg of rosiglitazone (n = 20) or

matched placebo (n = 10) for 6 months. Delayed memory was

preserved and attention improved over the 6-month trial for the

rosiglitazone-treated group, whereas the placebo-assigned group

showed the expected decline in performance. The degree of

memory preservation was related to treatment response as

indexed by fasting plasma insulin levels at 6 months. Plasma Ab
levels declined over the 6-month treatment period for the

placebo-treated patients and remained stable in the

rosiglitazone-treated group. Despite these promising results, a

subsequent Phase III trial conducted by GlaxoSmithKline failed

to show a benefit of 2, 4 or 8 mg of rosiglitazone over a 6-month

period. These negative results, coupled with concerns about

possible negative cardiovascular effects of rosiglitazone, have

dampened enthusiasm for its use as a therapeutic agent

for Alzheimer’s disease. However, the thiazolidinedione
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pioglitazone remains an attractive candidate and is currently

being investigated in a Phase III trial.

Intranasal insulin

Insulin and its signalling markers are reduced in the central

nervous system in Alzheimer’s disease. Multiple studies

demonstrate that supplementing insulin through intravenous

administration (while maintaining euglycaemia) acutely

increases central nervous system insulin and reliably improves

cognition [10,11,117]. However, chronic peripheral insulin

administration is not a viable therapeutic option because

of risks associated with hypoglycaemia. In addition, it is

likely that such an approach would exacerbate peripheral

hyperinsulinaemia, with possible negative effects on Ab
clearance. Any long-term treatment strategy for normalizing

central nervous system insulin levels in persons with Alzheimer’s

disease must avoid significantly increasing insulin in the

periphery. Such an approach is possible with an intranasal

administration technique.

Intranasal pathways to the central nervous system

The nasal cavity is unique in that olfactory sensory neurons are

directly exposed to the external environment in the upper nasal

cavity, while their axons extend through the cribriform plate to

the olfactory bulb. Following intranasal administration, low

molecular weight drugs can be directly transported to the central

nervous system, bypassing the periphery. Several extraneuronal

and intraneuronal pathways from the nasal cavity to the central

nervous system are possible. The extraneuronal pathways rely on

bulk flow transport through perineural channels to the brain or

cerebrospinal fluid. In recent studies, labelled intranasal insulin

or a closely related peptide, insulin-like growth factor-I (IGF-I),

were administered to rodents [118,119]. Within 30 min, an

IGF-I signal was detected along olfactory and trigeminal

channels, with robust signal evident in hippocampus, amygdale

and cortex. An additional extracellular pathway was identified

with quick access to the cerebrospinal fluid after absorption into

the submucosa along the olfactory nerve and cribriform plate

[119–121]. These extracellular pathways provide direct access to

the central nervous system within minutes of intranasal

administration. Additionally, an intraneuronal pathway

delivers drugs to the central nervous system hours or days later.

Anterograde axoplasmic transport within olfactory sensory

neurons has been demonstrated.

Intranasal insulin effects in the central nervous system

Several studies have examined the effects of intranasal insulin in

human and animal models. Kern and colleagues [120]

administered 40 IU of insulin intranasally in young, healthy

adults. Cerebrospinal fluid and blood were sampled every

10–20 min for 80 min following administration. Insulin

treatment resulted in increased cerebrospinal fluid insulin levels

within 10 min of administration compared with placebo, with

peak levels noted within 30 min. Cerebrospinal fluid insulin

levels remained elevated for the 80-min study. Blood glucose and

insulin levels did not change, demonstrating that the effects in

cerebrospinal fluid are not attributable to transport from the

nasal cavity to the systemic circulation. This is consistent with a

large literature that demonstrates insulin’s poor transport

from the nasal cavity into blood [122]. Although elevated

cerebrospinal fluid insulin levels do not conclusively demonstrate

that brain insulin levels are similarly elevated, animal studies

have shown significant drug uptake to the hippocampus and

cortex. Francis et al. showed that intranasal insulin reversed the

effects of diabetes in a murine model, reducing brain atrophy,

increasing markers of synaptic function, increasing insulin

receptors and phosphorylation, reversing diabetes-related

reductions in choline acetyltranferase levels, reducing neuronal

NFjB activation and increased activation of Akt, cAMP

response element binding protein and GSK3b. These

multifaceted effects were accompanied by a striking

preservation of memory as measured by the Morris Waster

Maze and radial arm tasks [118].

Functional and cognitive studies of the acute and chronic

effects of intranasal administration also support insulin’s

transport to the central nervous system. Sixty minutes of

intranasal insulin treatment (20 IU every 15 min) induced

changes in auditory-evoked brain potentials (AEPs) compared

with placebo [123]. We have also demonstrated that intranasal

insulin acutely improves verbal memory in memory-impaired

persons without affecting plasma insulin or glucose levels [124].

Memory impaired and normal adults received saline and four

doses of intranasally administed regular insulin (10, 20, 40 or

60 IU insulin) on separate mornings. Per cent change in

memory (story recall) relative to the placebo condition was

enhanced for the three lower doses for the memory-impaired

group.

With respect to effects of chronic intranasal insulin

administration, several studies reported that 2 months of daily

insulin administration (4 · 40 IU ⁄ day) significantly improves

verbal memory and enhanced mood in young healthy adults

[125,126]. In a recent pilot clinical trial we examined the effects

of short-term daily intranasal insulin administration in 25 adults

with Alzheimer’s disease or mild cognitive impairment, who

were randomly assigned to receive insulin (20 IU twice daily;

n = 13)orplacebo (n = 12) for21 days.Relative to theirbaseline

performance, insulin-treated subjects had improved memory and

attention at day 21 than did placebo-assigned subjects.

In a recently-concluded trial, we extended these preliminary

findings and examined the effects of two doses of intranasal

insulin (20 and 40 IU) compared with placebo administered for

4 months to 104 adults with Alzheimer’s disease or mild

cognitive impairment [127]. Improved delayed memory was

observed for the 20-IU group and performance preserved on

other measures of cognition and daily function for both insulin-

treated groups over the 4-month period. For a subset of

participants who received F-18 fluorodeoxyglucose (FDG)
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positron emission tomography, cerebral glucose metabolism

declined for the placebo group and remained stable or improved

for both insulin-treated groups. These two studies provide the

first evidence of cognitive improvement following daily

intranasal insulin administration for patients with early

Alzheimer’s disease and support brain insulin signalling as a

promising target in the search for new therapeutic avenues in

Alzheimer’s disease.

Lifestyle modification: strategies for
prevention

Although mediated by genetic influences, insulin resistance

occurs largely as a result of lifestyle factors, including

hypercaloric diets high in simple carbohydrates and saturated

fats, and physical inactivity. Implementation of intervention

programmes that address these challenges could significantly

reduce the social and economic burden associated with late-onset

dementia. Here, we examine two promising non-

pharmacological strategies aimed at reducing pathological

processes associated with ageing and dementia: diet

modification and physical exercise.

Diet modification

A typical ‘Western’ diet consists of high levels of saturated

fats and simple carbohydrates, a pattern of consumption that

substantially raises the risk of insulin resistance, Type 2 diabetes,

obesity, cardiovascular disease and hypercholesterolaemia [128–

130], as well as the likelihood for cognitive impairment and

Alzheimer’s disease [131–135]. Conversely, improving the

dietary profile to include reduced saturated fat and increased

mono- and polyunsaturated fats may produce protective effects

on cognitive functioning and Alzheimer’s disease risk [131–134].

Animal models that examine the effects of diet intervention on

Alzheimer’s disease neuropathology have demonstrated that

diets high in either saturated fat or sucrose modify processing of

the amyloid precursor protein from which the Ab peptide is

produced, increase Ab-related cerebrovascular disturbance and

reduce brain insulin signalling and expression of the insulin

degrading enzyme [136,137]. This section highlights the

emerging support from recent human studies that suggest

dietary intervention may play a key role in the prevention and

treatment of cognitive decline in ageing.

Dietary patterns, cognition and dementia risk

Evidence from population-based studies generally supports that

improved dietary profile leads to a reduced risk of age-related

cognitive decline and dementia. These studies often focus on

specific dietary elements and the role of fatty acids has received

particularly close attention. For example, greater fish

consumption and overall polyunsaturated fat intake has been

associated with both improvements in cognition and reduced

Alzheimer’s disease risk; conversely, high saturated and trans-

unsaturated fats are associated with worse cognition, greater

decline and increased Alzheimer’s disease and vascular dementia

risk [138].

Despite the overall promising epidemiological support, not all

longitudinal studies have foundanassociation between fat intake

profile and cognitive decline or dementia risk [139]. In addition,

large clinical trials that incorporated specific fatty acids have

generally failed to produce substantial positive results [140]. It

has thus been postulated that a ‘whole diet’ approach, which

mimics overall nutritive consumption patterns, may be a more

useful and valid method of study. For example, the

‘Mediterranean diet’, which emphasizes consumption of

complex carbohydrates, unsaturated fats and fruits and

vegetables, and is low in saturated fats and simple

carbohydrates, has received a great deal of attention for its

association with reduced risk for both Alzheimer’s disease and

mild cognitive impairment [141–143]. In a recent controlled

intervention trial aimed at examining the effects of diet on

cognitive function and cerebrospinal fluid biomarkers in older

adults with and without cognitive impairment, subjects were

assigned to a 4-week isocaloric diet that consisted of either high

saturated fat ⁄ high simple carbohydrates (a pattern associated

with Type 2 diabetes and insulin resistance) or low saturated

fat ⁄ low simple carbohydrates [144]. The diets produced

pronounced changes in cerebrospinal fluid biomarker profiles,

modulating levels of Ab and the oxidative injury marker

F2-isoprostane, and the low saturated fat ⁄ low glycaemic index

diet was associated with improved memory. Taken together,

these animal, population-based and human intervention studies

suggest that dietary factors may influence the expression of

Alzheimer’s disease.

Physical exercise

A sedentary lifestyle is likely a key factor in the increase in insulin

resistance-related conditions noted in recent years. Aerobic

exercise, known to be an effective treatment for diabetes and

related conditions, also has potent salutary effects in the brain

[145,146]. Increased physical activity is consistently linked

with improved learning and memory both in humans and

in animal models [147]. The favourable effects of exercise

are likely exerted through multiple pathways known to

be influenced by insulin resistance, including improved

cardiovascular and cerebrovascular function [148,149], anti-

inflammatory processes [150,151] and enhanced insulin-

dependent energy metabolism [152]. Thus, aerobic exercise has

the potential to modify multiple processes compromised in

pathological brain ageing. In the following sections, we review

the evidence supporting a protective role of physical exercise

intervention on dementia risk throughout the lifespan.

Lifetime exercise and dementia risk

Observational studies suggest that moderate physical activity

throughout the lifespan is associated with improved cognitive

function and reduced dementia risk in older age. For example,
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self-reported lifelong moderate exercise was associated with

improved working memory, processing speed and global

intelligence in post-menopausal women [153]. Regular exercise

during midlife, when many pathological disease processes likely

begin, has been linked to reduced dementia risk and improved

cognitive profile in older adults [154,155]. Long-term exercise

has been shown to impact Alzheimer’s disease pathology as well.

In a recent study, older adults who exercised at least 30 min per

day, 5 days per week for at least 10 years demonstrated lower

brain Ab deposition [using Pittsburgh compound B, PiB, on

positron emission tomography (PET) scan] [156]. Animal

models suggest that the benefits of aerobic exercise may begin

early during the course of development by boosting neural

reserves at a young age [157,158]. Human studies that rely on

retrospective self-report have connected level of physical activity

during adolescence and young adulthood to higher global

cognitive functioning in women and improved processing

speed in men during older age [153,159]. Taken together, these

results suggest that a consistent lifelong exercise routine is likely

an important component in the primary prevention of cognitive

decline and dementia.

The impact of exercise during older age

Exercise and normal ageing: risk reduction

Physical activity during older age is associated with improved

cognitive functioning in areas commonly affected by the

normal ageing process, including processing speed, executive

function and memory [145,160–165]. Numerous large-scale

epidemiological studies provide evidence that links physical

activity in older adults with reductions in the cognitive decline

experienced by non-exercisers [166–169]. Although large-scale

exercise intervention trials have yet to be completed, smaller

trials demonstrate that aerobic exercise has particularly

significant effects for cognitive processes related to executive

functions, including selective and divided attention. These results

are seen in both healthy and pre-diabetic older adults [145,170].

Further, imaging studies demonstrate that exercise interventions

result in reductions in age-related volume loss [171,172] and

more efficient brain activity in executive networks [173]. Indeed,

12 months of exercise training increased hippocampal volume

significantly, reversing age-related decline by approximately

2 years [174]. Interestingly, some have suggested that older

adults may derive even more benefit from exercise than younger

adults with regard to improved cerebral vascular tone [175] and

reduced cognitive decline [176].

Exercise and cognitive impairment: disease intervention

Recently, physical exercise has received attention as a potentially

effectivenon-pharmacological strategy topreventor slowdecline

in older adults already experiencing mild cognitive changes

[177]. Although there are a limited number of intervention trials

that specifically target mild cognitive impairment, initial results

from studies that include moderate- to high-intensity exercise

interventions present promising results. In a small, randomized,

controlled 6-month trial of aerobic exercise vs. a stretching

control condition for sedentary adults with mild cognitive

impairment [178], Baker et al. [165] found that the aerobic

exercise condition improved cardiorespiratory fitness, increased

insulin sensitivity, reduced plasma Ab levels and augmented

performance on multiple executive function tasks. In a 6-month,

randomized, controlled trial [179], subjects who exercised at a

moderate intensity level demonstrated significant improvements

on the Alzheimer Disease Assessment Scale (Alzheimer’s

diseaseAS-Cog). Despite these positive findings, however,

another recent study that employed a multi-modal exercise

programme for older adults with mild cognitive impairment who

lived in a structured living environment failed to show

improvements in cognitive function despite an enhanced

cardiovascular profile [180]. The reason behind this

discrepancy is not clear, but may suggest that, as cognitive

impairment progressesand a greater level of structure is required,

individuals may benefit to a lesser degree from exercise

intervention. These findings may thus have important

implications for the potential of exercise to mediate cognition

as neuropathological Alzheimer’s disease processes progress.

Despite a favourable relationship between cardiorespiratory

fitness and parietal and medial temporal lobe volume in patients

with Alzheimer’s disease [181], the small number of exercise

intervention trials completed to date do not provide support for

improvements in cognitive abilities once clinical Alzheimer’s

disease dementia is diagnosed [182]. A confounding factor,

however, is the degree to which a moderate level of intensity may

be achieved in these studies.

Summary

Himsworth’s astute observations 75 years ago regarding the

clinical manifestations accompanying differences in insulin

sensitivity remain remarkably relevant today, and have

expanded to encompass factors related to brain ageing and

neurodegenerative disease. This expansion has led to the

identification of novel mechanisms that may contribute to the

pathogenesis of conditions such as Alzheimer’s disease and,

subsequently, to a new array of therapeutic targets. The

concurrent increase in the ageing population and in the

prevalence of insulin resistance raises the specter of a rapid

escalation in the incidence of dementia. Fortunately, insulin

resistance and related factors that predispose the central nervous

system toward Alzheimer’s disease pathology are responsive to

lifestyle modification, offering a clear avenue to prevention.

Unlike many pharmacologic treatments, lifestyle intervention

strategies have pleiotropic effects and, as such, may be more

efficacious for treating multifactorial diseases such as

Alzheimer’s disease. Alzheimer’s disease pathology begins

many years prior to clinical symptomatology; thus, strategies

that focus on a ‘lifespan approach’ may achieve greater success

than tertiary pharmacologic interventions to reduce the terrible

burden of dementia to families and society. Although it is

not likely that Himsworth envisioned this goal directly, if
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accomplished it will become one of the most important facets of

his legacy.
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